Enhancer ID: | E_01_0433 |
Species: | human |
Position : | chr4:102498539-102500539 ![]() ![]() |
Biosample name: | |
Experiment class : | High+Lowthroughput |
Enhancer type: | Enhancer |
Disease: | Nothing |
Pubmed ID: | 29871881 |
Enhancer experiment: | Hi-C,RELA ChIP-seq, DNA seq |
Enhancer experiment description: | Looking at chromatin capture data, we found that the two classes of enhancers were lying in distinct topologically associating domains and chromatin loops. Our results suggest that specific nucleotide compositions encode for classes of enhancers that are functionally distinct and specifically organized in the human genome. |
Target gene : | BACH2(BTBD25,IMD60) |
Strong evidence: | qRT-PCR,qPCR,ChIP,3C |
Less strong evidence: | RNA-Seq |
Target gene experiment description: | Looking at chromatin capture data, we found that the two classes of enhancers were lying in distinct topologically associating domains and chromatin loops. Our results suggest that specific nucleotide compositions encode for classes of enhancers that are functionally distinct and specifically organized in the human genome.;Looking at chromatin capture data, we found that the two classes of enhancers were lying in distinct topologically associating domains and chromatin loops. Our results suggest that specific nucleotide compositions encode for classes of enhancers that are functionally distinct and specifically organized in the human genome.;Looking at chromatin capture data, we found that the two classes of enhancers were lying in distinct topologically associating domains and chromatin loops. Our results suggest that specific nucleotide compositions encode for classes of enhancers that are functionally distinct and specifically organized in the human genome.;Looking at chromatin capture data, we found that the two classes of enhancers were lying in distinct topologically associating domains and chromatin loops. Our results suggest that specific nucleotide compositions encode for classes of enhancers that are functionally distinct and specifically organized in the human genome.;Looking at chromatin capture data, we found that the two classes of enhancers were lying in distinct topologically associating domains and chromatin loops. Our results suggest that specific nucleotide compositions encode for classes of enhancers that are functionally distinct and specifically organized in the human genome. |
TF name : | NFKB1(CVID12,EBP-1,KBF1,NF-kB,NF-kB1,NF-kappa-B1,NF-kappaB,NFKB-p105,NFKB-p50,NFkappaB,p105,p50)RELRELA(p65,p65 NF-kappa B,p65 NFkB)BPTF |
TF experiment: | Hi-C,RELA ChIP-seq, DNA seq |
TF experiment description: | Looking at chromatin capture data, we found that the two classes of enhancers were lying in distinct topologically associating domains and chromatin loops. Our results suggest that specific nucleotide compositions encode for classes of enhancers that are functionally distinct and specifically organized in the human genome.;Looking at chromatin capture data, we found that the two classes of enhancers were lying in distinct topologically associating domains and chromatin loops. Our results suggest that specific nucleotide compositions encode for classes of enhancers that are functionally distinct and specifically organized in the human genome.;Looking at chromatin capture data, we found that the two classes of enhancers were lying in distinct topologically associating domains and chromatin loops. Our results suggest that specific nucleotide compositions encode for classes of enhancers that are functionally distinct and specifically organized in the human genome.;Looking at chromatin capture data, we found that the two classes of enhancers were lying in distinct topologically associating domains and chromatin loops. Our results suggest that specific nucleotide compositions encode for classes of enhancers that are functionally distinct and specifically organized in the human genome.;Looking at chromatin capture data, we found that the two classes of enhancers were lying in distinct topologically associating domains and chromatin loops. Our results suggest that specific nucleotide compositions encode for classes of enhancers that are functionally distinct and specifically organized in the human genome. |
Enhancer function : | Looking at chromatin capture data, we found that the two classes of enhancers were lying in distinct topologically associating domains and chromatin loops. Our results suggest that specific nucleotide compositions encode for classes of enhancers that are functionally distinct and specifically organized in the human genome. |
Enhancer function experiment: | Immunohistochemical staining |
Enhancer function experiment description: |
Looking at chromatin capture data, we found that the two classes of enhancers were lying in distinct topologically associating domains and chromatin loops. Our results suggest that specific nucleotide compositions encode for classes of enhancers that are functionally distinct and specifically organized in the human genome. |
SNP ID: | -- |